
TECHNICAL DEVELOPMENT

PET images are obtained by injecting patients with a 
radiopharmaceutical, such as fluorine 18 (18F) fluo-

rodeoxyglucose (FDG), and thus inherently require 
radiation exposure (1,2). According to the “as low as 
reasonably achievable” (ie, ALARA) concept, decreasing 
the injected radiotracer dose and reducing image data 
acquisition times are highly desirable advancements in 
children with cancer. Because image quality is propor-
tional to the number of coincidence events in the PET 
detector as a result of radiopharmaceutical positron an-
nihilation (3), both actions degrade diagnostic image 
quality and have been limited in clinical practice.

To address this challenge, convolutional neural 
networks (CNNs) have been developed, which can 
augment high-quality PET images from ultrafast or 

ultra-low-dose input images (3,4). Previous studies 
demonstrating the capabilities of CNNs to enhance 
PET images have two major limitations: (a) They focus 
on a single anatomic region and (b) reduction in radio-
tracer dose or acquisition time is limited. Most previous 
works are confined to brain PET reconstruction (5–9), 
whereas whole-body reconstruction is a much more 
challenging task. Whole-body PET images have higher 
intrapatient uptake variation (notably, 18F-FDG radio-
tracer concentration is much higher in the brain and 
bladder than elsewhere), which can introduce difficulty 
in reconstructing images (10). In addition, the limited 
performance of classic CNN-based algorithms confines 
the relative radiotracer dose reduction for whole-body 
PET images to half (4,11), a quarter (3), or 6.25% (12) 
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Purpose:  To develop a deep learning approach that enables ultra-low-dose, 1% of the standard clinical dosage (3 MBq/kg), ultrafast 
whole-body PET reconstruction in cancer imaging.

Materials and Methods:  In this Health Insurance Portability and Accountability Act–compliant study, serial fluorine 18–labeled fluoro-
deoxyglucose PET/MRI scans of pediatric patients with lymphoma were retrospectively collected from two cross-continental medical 
centers between July 2015 and March 2020. Global similarity between baseline and follow-up scans was used to develop Masked-
LMCTrans, a longitudinal multimodality coattentional convolutional neural network (CNN) transformer that provides interaction 
and joint reasoning between serial PET/MRI scans from the same patient. Image quality of the reconstructed ultra-low-dose PET was 
evaluated in comparison with a simulated standard 1% PET image. The performance of Masked-LMCTrans was compared with that 
of CNNs with pure convolution operations (classic U-Net family), and the effect of different CNN encoders on feature representation 
was assessed. Statistical differences in the structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and visual in-
formation fidelity (VIF) were assessed by two-sample testing with the Wilcoxon signed rank t test.

Results:  The study included 21 patients (mean age, 15 years ± 7 [SD]; 12 female) in the primary cohort and 10 patients (mean age, 13 
years ± 4; six female) in the external test cohort. Masked-LMCTrans–reconstructed follow-up PET images demonstrated significantly 
less noise and more detailed structure compared with simulated 1% extremely ultra-low-dose PET images. SSIM, PSNR, and VIF 
were significantly higher for Masked-LMCTrans–reconstructed PET (P < .001), with improvements of 15.8%, 23.4%, and 186%, 
respectively.

Conclusion:  Masked-LMCTrans achieved high image quality reconstruction of 1% low-dose whole-body PET images.

Supplemental material is available for this article.
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Materials and Methods

PET/MRI Cohort
This retrospective, Health Insurance Portability and Account-
ability Act–compliant study included two whole-body PET/
MRI cohorts (July 2015–March 2020): (a) a primary cohort 
and (b) a cross-continental validation cohort to assess the gen-
eralizability of our findings. We herein focus specifically on 
pediatric patients with lymphoma because these patients have 
an overall excellent prognosis, have a documented sensitivity 
to radiation effects, and would live long enough to experience 
long-term effects from radiation exposure (15). Notably, the 
proposed model for augmentation of ultra-low-dose PET im-
aging data is not confined to this scheme and can be gener-
alized across diseases and populations given enough training 
data. Both participating medical centers obtained approval 
from their institutional review boards. In addition, the primary 
medical center obtained institutional review board approval 
to collect de-identified images in a centralized image registry, 
along with relevant clinical information (patient age, sex, and 
tumor type). Written informed consent was obtained from all 
adult patients and parents of pediatric patients. Children were 
also asked to give their assent.

For the two cohorts, we collected both pretreatment whole-
body PET/MRI scans and posttreatment follow-up scans for 
each patient, resulting in 34 paired scans for the primary cohort 
(21 patients and 42 scans; a pair consists of one baseline scan 
and one follow-up scan) and 10 paired scans for the external test 
cohort (10 patients and 20 scans). Full-dose (3 MBq/kg) PET 
data were acquired in list mode, which helps detect coincidence 
events across the entire duration of the PET bed time (3 minutes 
30 seconds). The reduced-dosage PET images were generated by 
unlisting the PET list-mode data and reconstructed based on the 
1% of used counts, collected from the first 2 seconds of the scan, 
to simulate the ultra-low-dose scheme.

Masked-LMCTrans Approach
To reconstruct 1% extremely ultra-low-dose follow-up PET 
images by using both the acquired MRI and the referenced 
baseline PET/MRI scan, we had to effectively integrate four 
multiserial multimodality inputs. Inspired by ViLBERT’s suc-
cess in modeling visual-linguistic representations (16), we in-
troduced the coattentional transformer block to provide inter-
action between longitudinal medical scans. Our model, known 
as longitudinal multimodality coattentional CNN transformer 
(LMCTrans), is illustrated in Figure 1A. Following the classic 
approach (12), the three-dimensional whole-body volume was 
inferenced in a section-by-section fashion and the predicted 
two-dimensional sections were stacked together to reconstruct 
the final three-dimensional prediction. To avoid introduction 
of erroneous upstaging for resolved tumors with low metabolic 
activity on the posttreatment follow-up PET scans, we masked 
out the tumor area of the baseline PET and thereby named 
the approach Masked-LMCTrans. Below we detail the essential 
building blocks of Masked-LMCTrans. Appendix S1 describes 
the loss function and training details.

of the clinical standard dose. To the best of our knowledge, 
no studies have investigated 1% low-dose whole-body PET 
reconstruction.

The goal of this work is to develop a deep learning ap-
proach that allows for 1% extremely ultra-low-dose whole-
body PET reconstruction. To this end, we used the informa-
tion from longitudinal PET/MRI scans, a variable that has 
been largely ignored in previous studies. Indeed, a single 
patient usually undergoes multiple serial PET examina-
tions over time for monitoring of disease progression (13). 
Tumor-bearing regions may be the only components in the 
field of view to vary substantially between examinations 
(14). Here, we argue that the similarity between baseline 
and follow-up PET/MRI scans for the same patient can 
be learned by the proposed model and leveraged to reduce 
18F-FDG injection dose and scanning time. We proposed 
Masked-LMCTrans, a longitudinal multimodality coatten-
tional CNN transformer, for 1% low-dose PET reconstruc-
tion. Masked-LMCTrans consists of two parallel streams for 
baseline and follow-up scan processing that communicate 
through the coattentional transformer layers. The coat-
tentional transformer layers provide effective information 
exchange between the serial scans by using the global self-
attention mechanism. This joint model also accommodates 
the unique processing needs of each input modality—PET 
and MRI—by taking advantage of the precise localization 
from the CNN encoder. This provides a novel approach to 
reducing dosage that in turn opens doors for reconstruction 
of longitudinal medical imaging studies.

Abbreviations
AI = artificial intelligence, BN-ReLU-Conv = batch normalization, 
rectified linear unit, and 3 × 3 convolutions, CNN = convolutional 
neural network, FDG = fluorodeoxyglucose, PSNR = peak signal-
to-noise ratio, SSIM = structural similarity index measure, VIF = 
visual information fidelity

Summary
The authors developed a longitudinal multimodality coattentional 
convolutional neural network transformer (Masked-LMCTrans) 
for ultra-low-dose (1%) and ultrafast reconstruction of whole-body 
PET/MRI in pediatric patients with lymphoma.

Key Points
	■ Masked-LMCTrans–reconstructed PET images demonstrated 

less noise and more detailed structure compared with simulated 
1% extremely ultra-low-dose PET, demonstrating significant im-
provements (P < .001) of 15.8% in the structural similarity index 
measure, 23.4% in peak signal-to-noise ratio, and 186% in visual 
information fidelity.

	■ Masked-LMCTrans enables longitudinal radiologic image recon-
struction by jointly reasoning multiserial images, offering a timely 
new perspective and pathway for general dosage reductions within 
and beyond PET.

Keywords
Pediatrics, PET, Convolutional Neural Network (CNN), Dose 
Reduction
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Moreover, PET and MRI need different levels of feature encod-
ing due to their inherent complexity and initial abstract nature 
of their input representations. Therefore, we set PET feature 
encoder simpler than MRI (one vs two BN-ReLU-Conv [Fig 
1A]) before fusing them, as PET features are themselves already 
the output of the PET reconstruction network. We further ex-
amined the representational power of different CNN encoders.

Coattentional transformer layer for longitudinal fusion.— 
Although initial feature extractions are essential, equally im-
portant is how the baseline and follow-up PET/MRI scans re-
late to one another (eg, how to make use of the higher-quality 
baseline PET to benefit the reconstruction of the extremely ul-
tra-low-dose follow-up PET). Thus, we used the coattentional 

DenseNet encoder for feature extraction.— We applied 
DenseNet (17) block as our encoder of choice because it dem-
onstrates strong representational power with convolution op-
erations and dense collectivities (Fig 1A). The  lth layer receives 
the “collective knowledge”—the feature maps from all preced-
ing layers, x0, x1, ...,xl-1—as inputs:

xl = Hl([x0, x1, ...,xl-1]),

where [x0, x1, ...,xl-1] refers to the concatenation of the feature 
maps produced in layer 0, 1, ...,l-1. Hl denotes the composite 
function of three operations: batch normalization, rectified lin-
ear unit, and 3 × 3 convolutions (BN-ReLU-Conv). Such at-
tributes introduce diversified features with all complexity levels 
and richer patterns that benefit the final PET reconstruction. 

Figure 1:  Proposed Masked-LMCTrans (multimodality coattentional convolutional neural network transformer) for 1% extremely ultra-low-dose PET/MRI reconstruc-
tion. (A) Framework of Masked-LMCTrans. The referenced baseline PET (with tumor area masked out as covered in the yellow mask) and MRI, along with the follow-up 
1% PET/MRI scans, are fed into the model as combined inputs. The DenseNet feature encoder encodes PET and MRI separately before aggregation, with batch normal-
ization, rectified linear unit, and 3 × 3 convolution (BN-ReLU-Conv) composite operations and dense collectivities. The coattentional transformer block fuses the informa-
tion from the baseline and the follow-up (as indicated by the feature maps colored in orange and blue, respectively; the fused feature maps in the latter layers are mixed 
colored). The fusion is performed through baseline and follow-up information exchange by query, key, and value (denoted as Q, K, V). In this manner, Masked-LMCTrans 
reconstructs a 1% follow-up PET image, making use of the longitudinal similarity. (B) Representative posttreatment fluorine 18 fluorodeoxyglucose PET/MRI scan in a 
14-year-old male patient with Hodgkin lymphoma. The contrast and structural details are significantly improved on Masked-LMCTrans–reconstructed PET as opposed 
to the simulated 1% PET. The red bounding box shows the spine anatomic structure, which is completely missing in the simulated 1% PET but successfully reconstructed by 
Masked-LMCTrans, with the help of the referenced baseline PET. The small tumor around the left supraclavicular region (arrow) in the baseline PET was resolved after treat-
ment and was not shown on the reconstructed PET. 



4� radiology-ai.rsna.org  ■  Radiology: Artificial Intelligence Volume 5: Number 3—2023

AI Transformers for Radiation Dose Reduction in Serial Whole-Body PET 

similarity on a scale of 0 (no similarity) to 1 (perfect similarity). 
PSNR is most commonly used to measure the reconstruction 
quality of a lossy transformation (20). The higher the PSNR, 
the better the degraded image has been reconstructed to resem-
ble the original image. SSIM and PSNR mainly focus on pix-
elwise similarity; thus, VIF was introduced. VIF uses natural 
statistics models to evaluate psychovisual features of the human 
visual system (21). The code for calculating the performance 
was written with Python. Standardized uptake values are the 
most widely used metric in clinical FDG PET oncologic im-
aging in assessing tumor glucose metabolism. The maximum 
standardized uptake value of the liver was measured by placing 
a three-dimensional volume of interest over the liver.

Statistical Analysis
Masked-LMCTrans was written in Python 3, with model train-
ing and testing performed using the PyTorch package (version 
1.10). All statistical analyses were performed using R software (R 
Project for Statistical Computing). To assess the significance of 
the difference between two-sample tests, we used the Wilcoxon 
signed rank t test as implemented in R software. We used a pre-
defined P value of less than .05 to indicate statistical significance. 
Performance results for the primary and external test cohorts are 
reported as mean, SD, and first (25%) and third (75%) quartiles 
of the data.

Data Availability
All of the code of the algorithm, the models, and the de-identi-
fied data can be made available from the authors upon reason-
able request.

Results

Patient Characteristics
The primary cohort included 21 patients (mean age, 15 years 
± 7 [SD]; 12 female, nine male). The external test cohort 
included 10 patients (mean age, 13 years ± 4; six female, four 
male) (Table 1).

Comparison of AI-reconstructed and Ultra-Low-Dose PET 
Image Quality
Masked-LMCTrans–reconstructed PET images demonstrated 
significantly less noise and more detailed structure compared 
with the simulated 1% extremely ultra-low-dose PET (Fig 1B, 
Table 2). Pairwise t tests (P < .001) indicated an improvement 
of 15.8% in SSIM, 23.4% in PSNR, and 186% in VIF.

Benefit of Longitudinal PET/MRI Reconstruction
Compared with the single-stream model, Masked-LMCTrans–
reconstructed PET better captured structural details because of 
its access to high-quality baseline PET/MRI reference data and 
capacity to grasp similarities between longitudinal scans (Figs 
2, 3). On all of the 24 paired PET/MRI testing scans, Masked-
LMCTrans consistently outperformed the single-stream base-
line in SSIM and VIF (P < .05 for all patients).

transformer layer to capture the complex long-range tempo-
ral dependency. As opposed to CNNs, in which the receptive 
fields are gradually expanded through a series of convolution 
operations, the self-attention operations inherited in the trans-
former allow full coverage of the entire input space through 
token (ie, region) matching–in other words, each token is 
“matched” with all tokens within the input. Three vectors are 
calculated for each token: query, key, and value. Token match-
ing computes a dot product score between the query (the token 
in consideration) and the key (the token being matched with) 
to weigh the value (of the token being matched with). This 
score determines how much focus to place on other regions of 
the input as we encode the region at this certain position. In 
this way, global self-attention, which refers to the dependen-
cies between regions even when they are distant, is obtained. 
The coattentional transformer layer in Masked-LMCTrans 
computes query, key, and value matrices, as in a standard 
transformer block, given intermediate feature representations 
of baseline and follow-up PET/MRI scans. However, the keys 
and values from each sequence are passed as inputs to the other 
sequence’s multiheaded attention block. Consequently, the 
attention block produces attention-pooled features for each 
sequence conditioned on the other, in effect performing base-
line conditioned follow-up attention in the baseline stream 
and follow-up conditioned baseline attention in the follow-up 
stream. Thus, when the model processes each region in the to-
be-reconstructed follow-up PET/MRI, the module allows it to 
look at other positions in the referenced baseline PET/MRI for 
clues that may improve encoding for this region. As a result, 
the correlation and similarity between baseline and follow-up 
streams is completely encapsulated.

Masked-LMCTrans.— Chemotherapy leads to a decrease in 
size and metabolic activity of lymphomas. On interim scans, 
2–4 weeks after start of chemotherapy, a metabolic tumor 
response is defined by a decline in tumor metabolic activity 
at or below the metabolic activity of the liver as an internal 
standard of reference. Stable disease is defined as unchanged 
metabolic activity, and progressive disease is defined as in-
creased metabolic activity or development of new tumor nod-
ules. Acknowledging that variance of this nature should not be 
introduced in the follow-up PET reconstructions, we elected 
to mask out the prominent tumor regions in the baseline (pre-
treatment) PET scans before feeding them into the proposed 
model (Fig 1A inputs).

Computational Assessment
For evaluation, we adopted three quantitative metrics to mea-
sure the quality of the reconstructed PET images: structural 
similarity index measure (SSIM), peak signal-to-noise ratio 
(PSNR), and visual information fidelity (VIF). SSIM is the 
most widely used metric in imaging reconstruction. It is a com-
bination of luminance, contrast, and structural comparison 
functions (18,19). Specifically, the SSIM score was derived by 
comparing the artificial intelligence (AI)–reconstructed PET 
and true standard-dose PET sequences and quantifying the 
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Table S1). In addition, Masked-
LMCTrans consistently out-
performed the single-stream 
transformer baseline and U-Net 
models in the SSIM, demon-
strating the model’s generaliz-
ability and robustness to varia-
tions in scanner hardware and 
software.

Assessment of Four CNN 
Feature Encoders
When moving from EDSR (en-
hanced deep super-resolution 
network; the worst performer) to 
DenseNet (the best performer) 
with 32 growth rate (the number 
of new feature maps added by 
each layer within a dense block) 
and three blocks, we observed 
a 2.5-dB increase in PSNR, 
indicating the superiority of 
DenseNet in modeling PET/
MRI modalities (Fig 4).

Discussion
Our data showed that a lon-
gitudinal multimodality coat-
tentional CNN transformer for 
PET reconstruction (Masked-
LMCTrans) enabled high image 
quality reconstruction of 1% 
low-dose whole-body PET im-
ages. Our approach is unique 
in that it uses paired baseline 
PET/MRI scans to aid in the 
reconstruction of extremely 
ultra-low-dose follow-up PET 
scans along with the high-reso-
lution structural MRI. Masked-
LMCTrans accommodates the 
unique processing needs of 
each input modality by taking 
advantage of the strong repre-

sentational power from the DenseNet encoder. Meanwhile, 
this joint model integrates complex long-term dependency 
for the longitudinal images by using the global self-attention 
mechanism introduced by the coattentional transformer 
block. Masked-LMCTrans effectively captures the dynamic 
information from longitudinal PET/MRI scans to reduce the 
image noise and recover the structural details of tumors and 
the liver. As a result, target tumors could be detected in the 
AI-reconstructed 1% extreme-low-dose PET images. From 
here, we can apply this algorithm for reconstruction of higher 
count images to determine which minimal 18F-FDG dose will 
lead to clinically acceptable image quality.

Advantage of Coattentional Transformer Layer
Despite the addition of baseline PET/MRI, U-Net-4 had simi-
lar values to U-Net 2 in SSIM, VIF, and PSNR in the primary 
cohort (Fig 2). Masked-LMCTrans—with the help of coatten-
tional transformer layers—significantly outperformed U-Net 
models (Fig 3).

Generalizability in an Independent External Test Cohort
Image quality was significantly improved on Masked-LMC-
Trans–reconstructed PET as opposed to the original 1% ex-
tremely ultra-low-dose PET images by 5.15 dB in PSNR, 
4.50% in SSIM, and 0.167 in VIF, demonstrating good 
model generalization across different institutions (Fig S1, 

Table 1: Patient Demographic Characteristics for Primary and Multicenter PET/MRI 
Datasets

Characteristic Primary Cohort External Test Cohort Total

No. of patients 21 10 31
Female patients 12 6 18
No. of paired scans* 34 10 44
Age (y)
  Mean ± SD 15 ± 7 13 ± 4 14 ± 6
  Range 6–30 5–17 5–30
Type of lymphoma 
  Hodgkin 12 8 20
  Non-Hodgkin 3 2 5
  PTLD 6 0 6

Note.—Unless otherwise indicated, data are numbers. Inclusion criteria were the following (a) age 
< 30 years, (b) histologically proven lymphoma, (c) PET/MRI scan at baseline before chemothera-
py, (d) assent (required in case of children). Exclusion criteria were the following: (a) MRI-incom-
patible metal implants, (b) claustrophobia, (c) pregnancy. 3T Signa PET/MRI scanners were used 
(GE Healthcare and Siemens Healthineers). Training/testing entailed model development cohort, 
threefold cross-validation, and external test. PTLD = posttransplant lymphoproliferative disease. 
* A pair consists of one baseline scan and one follow-up scan for the same patient.

Table 2: Evaluation Results on 1% Extremely Ultra-Low-Dose PET Reconstruction: Pri-
mary Cohort

Variable 1% Ultra-Low-Dose PET (n = 24) Masked-LMCTrans PET (n = 24) P Value

SSIM
  Mean ± SD 0.738 ± 0.051 0.852 ±  0.041 <.001
  Median (Q1, 

Q3)
0.745 (0.696, 0.772) 0.862 (0.822, 0.894)

PSNR
  Mean ± SD 27.5 ± 1.48 34.6 ±  2.58 <.001
  Median (Q1, 

Q3)
27.5 (26.4, 28.6) 35.0 (33.6, 36.3)

VIF
  Mean ±  SD 0.110 ± 0.033 0.324 ± 0.051 <.001
  Median (Q1, 

Q3)
0.111 (0.091, 0.128) 0.331 (0.286, 0.361)

Note.—PSNR = peak signal-to-noise ratio, SSIM = structural similarity index measure, VIF = 
visual information fidelity. 
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The model may enable reduced radiation dose and/or 
faster PET imaging, which could further affect patient care 
by offering safer scans and higher patient throughput.

We would like to motivate the exploration of longitudinal 
radiologic image reconstruction that may enable a new pathway 
for general dosage reduction in modalities beyond PET. To date, 

Figure 2:  Qualitative results of Masked-LMCTrans (multimodality coattentional convolutional neural network transformer) with comparison models: single-stream trans-
former, U-Net-4, and U-Net-2. (A) Representative posttreatment fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/MRI scan in a 14-year-old male patient with Hodgkin 
lymphoma from the primary cohort. The spine structure is completely missed by the other models but recovered by Masked-LMCTrans, although not perfectly, whereas 
the 1% PET is extremely noisy. (B) Representative posttreatment 18F-FDG PET/MRI scan in a 19-year-old female patient with Hodgkin lymphoma from the primary cohort. 
Tumor-to-liver maximum standardized uptake value (SUVmax tumor/SUVmax liver) contrast is preserved in all reconstructions. The reconstructions for the unresolved tumor (as 
the yellow circle indicates in 100% standard-dose PET) from models of the transformer family (Masked-LMCTrans and single-stream transformer) resemble that of 100% PET 
in terms of structural fidelity. SSIM = structural similarity index measure, VIF = visual information fidelity.

Figure 3:  Model performance comparison on the primary cohort and external test cohort. The violin plots show the quantitative metrics in peak signal-to-noise ratio 
(PSNR), visual information fidelity (VIF), and structural similarity index measure (SSIM), along with 95% CIs. Masked-LMCTrans refers to multimodality coattentional convolu-
tional neural network transformer, and single-stream trans refers to single-stream transformer. P values between Masked-LMCTrans and the other three models are less than 
.05 for SSIM and VIF metrics over both the primary and external cohorts, indicating statistically significant differences.
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few efforts have been reported in this direction (22,23). The in-
ability of the conventional methods to allow for jointly reasoning 
multiserial images hinders current exploration in this direction, 
even though it is common clinical practice for patients to un-
dergo multiple serial scans. A framework that integrates complex 
global longitudinal dependency from sequential data with the 
precise localization from each input stream is crucial for jointly 
reasoning multiserial images. We anticipate that the proposed 
Masked-LMCTrans may serve as a common foundation for a 

wide array of radiology imaging reconstruction tasks, including 
those for CT and contrast-enhanced MRI.

Our study had some limitations. Lymphoma typically has 
robust baseline metabolic activity in pediatric patients. Further 
work is needed to assess whether the proposed approach can 
also perform well with low-grade, more subtle hypermetabolic 
lesions. In addition, we follow existing lesions that have been 
diagnosed on the baseline scan. It is necessary to see whether 
the model performs equally well in other tissues besides soft 

Figure 4:  Convolutional neural network (CNN) encoder architectures and performance comparisons. The representational power of the four 
most commonly used CNN feature extractors were examined: DenseNet, ResNet, EDSR, and VGG. The CNN-encoder part of Masked-LMCTrans 
(multimodality coattentional convolutional neural network transformer) was replaced with the four structures, respectively, and the resultant models 
were named as “Encoder-Trans.” (A–D) The architecture and operation composition for DenseNet, ResNet, EDSR, and VGG encoder, respectively. 
(E) Violin plots show the model performances with 95% CIs. P values between DenseNet encoder and the other three encoders are less than .05 
for peak signal-to-noise ratio (PSNR) and VIF (visual information fidelity) metrics, indicating statistical significance. BN = batch normalization, conv = 
convolution, EDSR = enhanced deep super-resolution network, ReLU = rectified linear unit, SSIM = structural similarity index measure, VGG = Visual 
Geometry Group.
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tissue and lymph nodes, such as bone, as well as in new lesions 
on the interim scan. Further evaluation of image quality and 
lesion detection by experienced radiologists is necessary to as-
sess the clinical utility of the diagnostic images. Furthermore, 
the innate data demand of deep learning models and the lack 
of large-scale PET/MRI images represent a major bottleneck 
for further scale-up and transition of our research outcomes 
to practical use. Future prospective studies should validate our 
observations in larger patient populations, perhaps through a 
multicenter approach. Another limitation was that our study 
used simulated low-dose PET images; evidence of AI-enabled 
1% low-dose reconstruction in true injected low-dose cases is 
still needed. Future prospective studies must show whether 
PET/MRI images reconstructed from digital ultra-low-dose 
PET images captured prospectively provide similar results. Fi-
nally, PET detector hardware and postprocessing techniques 
are constantly evolving. The comparative performance of stan-
dard PET scans enhanced with Masked-LMCTrans versus 
novel PET detector designs, such as the Explorer whole-body 
PET imaging technology (24), remains an area for future work. 
The recently developed photon-counting detector CT (25,26) 
uses new energy-resolving x-ray detectors that lead to higher 
contrast-to-noise ratio and optimized imaging. Large field-of-
view PET scanners (27,28) have also substantially reduced the 
required PET data acquisition times by collecting PET infor-
mation from a larger field of view than currently available with 
most conventional PET scanners. It is worth comparing these 
techniques. In addition, we could cross-train our algorithm to 
augment image data from these new scanners and further ac-
celerate their image data acquisition time.

In conclusion, our approach holds promise for advancing 
the development of safe imaging tests, shortening examination 
durations, and increasing possibilities for frequent follow-up 
examinations.
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